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and (dH/dTs)P values. Measurement of the shift in 
transition temperatures caused by external magnetic 
fields of different orientations to the tetragonal c axis 
has provided information on crystalline anisotropy of 
the intermediate magnetic state in agreement with the 
results from magnetization measurements. 

Measurements of the Hall effect have shown that 
the number of current carriers is the same in both the 
ferrimagnetic and antiferromagnetic states, and this 

I. INTRODUCTION 

THIS paper is concerned with the effects of the 
classical dipole-dipole interaction between mag­

netic moments on the spin-wave spectrum of a simple 
uniaxial antiferromagnet. In ferromagnets, it has been 
known for some time1 that the surface demagnetizing 
fields have a profound influence on the ferromagnetic-
resonance frequency. Further, it has been shown by 
Herring and Kittel2 that the volume dipolar fields cause 
the ferromagnetic spin-wave spectrum to become aniso­
tropic. Anderson and Suhl3 were the first to recognize 
that the surface demagnetizing fields give rise to a region 
of the spin-wave spectrum which is degenerate in fre­
quency with the uniform ferromagnetic-resonance mode. 
The reason for this degeneracy is that, for spin waves 
with wavelengths short compared to sample dimensions 
(&L^>1), the signs of the magnetic poles on the surface 
giving rise to the transverse demagnetizing field oscillate 
rapidly in space. The transverse demagnetizing field is 
proportional to the number of uncompensated poles and 
is, therefore, small. On the other hand, the longitudinal 
demagnetizing field is large and leads to a reduction of 

* This work was supported in part by the U. S. National Science 
Foundation. 
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information has yielded a value of 2.5 eV for the Fermi 
energy at absolute zero. 
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the spin-wave frequencies so that some of the spin waves 
become degenerate with the uniform mode. This de­
generacy allows crystalline imperfections4 to mix the 
uniform mode (k = 0) spin waves generated on resonance 
with the plane-wave (k^O) spin waves in the degenerate 
manifold and thus gives rise to an important source of 
linewidth. Further, it has been shown by Suhl5 that the 
premature saturation of the ferromagnetic-resonance6 

signal is due to coherent spin-wave scattering into the 
degenerate modes via the dipolar-anisotropy fields. 

I t is interesting to speculate about the importance of 
similar effects in antiferromagnets where there is no net 
magnetization and thus no bulk demagnetizing field. 
Keffer and Kittel7 have indeed shown that the oscillat­
ing transverse moment generated in antiferromagnetic 
resonance (AFR) does give rise to a demagnetization 
shift in the antiferromagnetic-resonance frequency. This 
shift is, however, quite small compared to the ferro­
magnetic case. In ferromagnets 8o)/o)^NMs/H7 which 
may be of the order of unity, where N is some appropri­
ate demagnetization factor, Ms the macroscopic mag-

4 A. M. Clogston, H. Suhl, L. R. Walker, and P. W. Anderson, 
J. Phys. Chem. Solids 1, 129 (1957). 

6 H. Suhl, J. Phys. Chem. Solids 1, 209 (1957). 
6 R. W. Damon, Rev. Mod. Phys. 25, 239 (1953); N. Bloem-

bergen and S. Wang, Phys. Rev. 93, 72 (1954). 
7 F. Keffer and C. Kittel, Phys. Rev. 85, 329 (1952). 
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netization and H the sum of the external field and 
internal-anisotropy field. The corresponding result in 
antiferromagnets is 8co/o)^NxMa/He, where now Ms is 
the sublattice magnetization and He is the effective 
exchange field. For i V J f . ^ l O 8 Oe, # e « 1 0 6 Oe, 8o)/o) 
«3X10~ 2 , which is about one hundred times smaller 
than the ferromagnetic resonance results. In Sec. I I , we 
show that, nevertheless, in antiferromagnets the dipolar 
fields do produce an anisotropic spin-wave spectrum 
with a degenerate manifold. Section I I I deals with some 
order of magnitude calculations for AFR linewidths 
arising from scattering from crystalline imperfections. 
I t is shown that, in contrast to the ferromagnetic 
situation, paramegnetic impurities with a different ex­
change coupling to the host spins may give rise to 
scattering from the uniform mode. 

With the recent discovery of several antiferromagnets 
with resonance frequencies in the microwave range (e.g., 
RbMnF3 , KMnF3 , etc.) it is hoped that careful measure­
ments may allow the observation of such dipolar effects. 
Indeed, there is already evidence8 of premature satura­
tion of the AFR signal. 

II. SPIN-WAVE SPECTRUM 

In this section, we treat the problem of determining 
the frequency of the &th Fourier component of a small 
fluctuation in the transverse magnetization of an anti-
ferromagnet. The dipolar fields are introduced by 
requiring that Maxwell's equations be satisfied in the 
limit of vanishingly small electric and displacement cur­
rents.2 Ziman9 has formally solved the problem of the 
dipolar effects on the (k^O) part of the spin-wave spec­
trum in terms of a canonical transformation on the spin-
wave creation and annihilation operators. In the Ap­
pendix, we give an entirely equivalent treatment by 
solving for the eigenfrequencies of the coupled spin-wave 
equations of motion in the presence of a classical dipole-
dipole interaction. 

If Mi and M2 are the magnetizations of the two sub-
lattices, we may write their equations of motion in the 
absence of dipolar interactions as 

d M i / * = 7 M i X H e f f ( l ) , 

dM2/dt=yM2Xn,n(2), ( * } 

where y is the gyromagnetic ratio and Heff(i) is the 
effective field at the iih sublattice, including the external 
field Ho directed along the easy (z) axis, an internal 
single-ion anisotropy field, H^, arising, for example, 
from the combined crystalline field and spin orbit inter­
action, and the exchange field experienced by a spin on 
one sublattice arising from its nearest neighbor spins 
on the other sublattice. Then the equations of motion 

8 H. Van Till and J. A. Cowan, Bull. Am. Phys. Soc. 7, 448 
(1962); A. J. Heeger (to be published). 

9 J. Ziman, Proc. Phys. Soc. (London) 65, 540 (1952). 

become 

dMi/dt**yMi 

X C H o + H ^ - ( ^ e / M s ) ( H r 6 2 V 2 ) M 2 ] , 

dM2/dt=yM2
 ( ' } 

X [ H 0 - H ^ - ( F e / M s ) ( l + ^ V 2 ) M 1 ] , 

where b= az~112; a is the nearest neighbor separation and 
z is the number of nearest neighbors. The linearized 
equations for small transverse fluctuations in the mag­
netization become 

(l/y)dMi+/dt 

(l/y)dM2+/dt (II.3) 

= -ilM2+(HQ-HA-He)-He(l+b^)M1^2, 

where M+=Mx+iMy. If we take M+ to vary as 
e~ia>t+ik'T said solve the resulting secular determinant, we 
obtain the well-known10 AF dispersion law: 

CO/Y = # O ± (HA
2+2HeHA+2He

2b2k2yi2. (II.4) 

In the absence of an external field, there exist two 
degenerate, oppositely rotating modes for a given wave 
vector. The degeneracy is removed by the external field. 

We shall now include the effects of the dipolar fields. 
For the uniform (£ = 0) modes, there is a surface 
demagnetizing field — NM, where N is the demag­
netization tensor, and M = M H - M 2 . For simplicity, we 
assume a spheroidal sample with the easy axis colinear 
with the axis of revolution. Then N is diagonal, with 
Nx—Ny=Ni. For the other modes, (i.e., kL5>\) the 
transverse component of the magnetization varies 
sufficiently rapidly through the sample for the trans­
verse demagnetizing field to average to zero. The only 
contribution is then —NZMZ along the z axis. However, 
to first order in small transverse fluctuations of the 
magnetization Mz—M\z--M2z which vanishes. Conse­
quently, in the k^O part of the spin-wave spectrum, 
there will be no surface demagnetization corrections. We 
now investigate the volume dipolar interactions. Follow­
ing Kittel and Herring,2 neglecting any currents, we 
have the Maxwell equations 

V - B = 0 , 

where B = Hs+47rM and H s is the dipolar field caused 
by the spins themselves. If we try plane-wave solutions 
of the form 

M ^ M ^ o y ^ ' - ^ , (11.6) 

where M^i(Mix+M2
x)+j(Miy+M2

y), (5) gives the 
dipolar field as 

H . - - ( 4 * / # ) ( k - M 1 ) k . (II.7) 

10 T. Nagamiya, K. Yosida, and R. Kubo, in Advances in 
Physics, edited by N. F. Mott (Taylor and Francis Ltd., London, 
1955), Vol. 4, p. 1. 
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Now, for the uniform mode, including the surface 
demagnitizing fields, the equations of motion become 

{o,h)M1^^M^(H,+HA+He+NlMs) 
+M2+(He+NlMs), (II.8) 

(u/y)M2+=M2+(Ho-HA-~He-N1M3) 

The eigenfrequencies of this secular equation have been 
given by Keff er and Kittel7 and are 

o>/y = Ho±LHA"+2HA(He+NlMs)2
112^ (II.9) 

This is essentially the result given in the Introduction. 
For the sufficiently short-wavelength spin waves, the 
equations of motion, including the volume dipolar fields, 
are 

dM1/dt=yM1XDlo+RA-(He/Ms)(l+b2V^M2 

- ( V ^ X k - M O k ] , (11.10) 

dM2/dt=yM2Xlfto-ttA-(He/Ms)(l+b2V2)M1 

-(V£2)(k-ML)k]. 

The linearized equation of motion resulting from (10) 
cannot be expressed simply in terms of M+. The dipolar 
terms cause mixing of M+ and M~, i.e., the normal 
modes become elliptically polarized. The eigenfrequency 
solutions of this 4X4 secular equation are 

(a>/y)2=Ho2+HA
2+2HeHA+2H2b2k2 

+4TTMS sm26k(HA+Heb
2k2) 

±{4H0
2L2H2b2k2+HA

2+2HeHA 

+4wMs sm2dk(HA+Heb
2k2)~] 

+ 16TT2MS
2HA smA6k(HA+2Heb

2k2)}1f2, (11.11) 

where 6k is the angle between the z axis and the direction 
of propagation of the spin wave k. In the absence of an 
external field, the complicated result (11) can be con­
siderably simplified to give the two frequencies: 

«i /7= (HA
2+2HeHA+2HeWk*yi\ 

o>2/y=lHA*+2(HA+Heb
2k2) 

X(He+.brMssm2dk)Jl2. (TI.12) 

Notice the interesting result that one normal frequency 
is completely independent of any dipolar interactions. 
This result can be understood in the following manner. 
In the absence of external and dipolar fields, there exist 
two degenerate oppositely rotating modes. In the 
presence of the dipolar interaction, these two modes (for 
a given k) can mix in such a way that Mx is always 
perpendicular to k and thus the dipolar field vanishes. 
All the dipolar energy is then taken up by the other 
mode. In Fig. 1, we give schematically, the zero-field 
spin-wave spectrum. Notice that, except for the patho­
logical situation of an infinitely thin disk, there exist spin 
waves degenerate with the uniform mode. An external 
field, Ho, splits the degeneracy of the two oppositely 
polarized modes for a given wave vector and then the 

w/y 

VHA(HA+2He+87rMs) 

VHA(HA+2He) 

FIG. 1. Schematic representation of the antiferromagnetic 
spin-wave spectrum in zero external field. 

two modes will share the dipolar energy. However, for 
the special case of longitudinal spin waves, dk=0, the 
spectrum is just that given by (4) and there are no 
dipolar effects. In general, the transverse magnons, 
0&=§7r, have the largest dipolar energies because for 
these magnons k*Mx is maximum. In Fig. 2 the spin-
wave spectrum is shown with a nonvanishing external 
field [assuming that it is smaller than the "flopping" 
field,10 (2HeHAyi>2. 

III. DENSITY OF DEGENERATE STATES AND LINE-
WIDTH ARISING FROM IMPERFECTIONS 

Several authors4 •11~13 have studied the mixing by 
crystal imperfections of the uniform ferromagnetic 
resonance mode with the degenerate (or S) modes. The 
importance of aperiodic imperfections is that they give 
rise to spin-wave scattering processes which do not con­
serve wave vector. Such scattering from the uniform 
mode into the degenerate manifold has been recognized 
as playing a central role in ferromagnetic relaxation in 
insulators. Sparks, Loudon, and Kittel13 have shown 
that the low-temperature line width in ultra-pure YIG 
may be understood in terms of such mixing via the 
dipolar fields associated with surface pits. Calien and 
his co-workers11,12 have discovered several mechanisms 
for the mixing of the uniform mode with S magnons 
through point imperfections, concentrating mainly on 
the effects of spatial fluctuations of the spin-orbit 
coupling in the disordered ferrites. In this section, we 
shall derive the expressions for the relevant densities of 
degenerate states for scattering of spin waves out of the 
uniform mode by imperfections in antiferromagnets. We 
shall then use these results to estimate the AFR line-
width arising from some types of point imperfections 
and pits. 

The scattering process about an imperfection may be 
thought of as a process in which a uniform-mode magnon 
is destroyed and a degenerate magnon is created. The 

11 H. B. Callen and E. Pittelli, Phys. Rev. 119, 1523 (1960). 
12 C. W. Haas and H. B. Callen, Phys. Rev. 122, 59 (1961). 
13 M. Sparks, R. Loudon, and C. Kittel, Phys. Rev. 122, 791 

(1961). 
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w / y 

V H & ( H A + 2 H e ) + H 0 

V H A ( H A + 2 H e ) - H 0 

FIG. 2. Antiferromagnetic spin-wave spectrum 
for finite external field. 

scattering potential is written as 

V(k) = F(k)(a0ak++akao+), (HU) 

where F(k) is the strength of the interaction, depending 
on the type of imperfection. The ao and a0

+ are destruc­
tion and creation operators for uniform mode magnons; 
they obey boson commutation relations. The ak 's are 
similar creation and destruction operators for the ap­
propriate degenerate excitations. The net rate at which 
uniform-mode magnons are scattered into a degenerate 
state of wave vector k is given by 

W r=(V*)[|<»k+l,»o-l| F(k)K^0>|2 

- | (nk-1, nQ+11 7(k) | nk,no) | 2 > k , (III.2) 

or, using (III . l ) , 

W= (2T/ti)\F(k)\\no-nk)pk, (III.3) 

where nk is the occupation number of the state k, and pk 

is the number of states per unit energy range with wave 
vector k. The thermal equilibrium occupation of the 
degenerate states is the same as for the uniform mode. 
If the degenerate modes are assumed to be in thermal 
equilibrium with the lattice, then 

W= (2T/H)\F(k)\2
Pk(n0-no), (HI.4) 

where no is the thermal-equilibrium value of no. The 
relaxation time for scattering out of the uniform mode 

into the degenerate states is then 

T - i = (V/4ir%) [\F(k)\2
Pkdk (III.5) 

where V is the sample volume. The line width is related 
to the relaxation time by AH= (YT) - 1 . 

The evaluation of the density of states for the spec­
trum (11.11) is fairly complicated. However, for point 
imperfections, the strength of the scattering potential, 
F(k), is very nearly independent of k. Then it is not a 
bad approximation4 to neglect the anisotropic nature of 
the spectrum and to assume that all the degenerate S 
magnons lie at the upper limit of the degenerate spec­
trum in k space, i.e., at kmy given by 

2H2b2km
2=2NlHAMs (III.6) 

where the external field is taken to be zero. The density 
of states is 

7 ( 2 7 r ) - W k = V(2T)-^m(ha)-na>o)dk. (III.7) 

Using (11.11) and (III.6) one finds 

V(2T)-*Pkdk= (V/2T2)(km/2hyHe
2b2) 

X (2HeHAyi28(k-km)dk. (III.8) 

This is smaller than the corresponding ferromagnetic 
density of states by approximately HA/He^10~6-10~2. 
This might appear to indicate that the linewidths 
arising from impurity scattering are smaller in an anti-
ferromagnet than in a ferromagnet. This is, however, 
not the case and in fact the amplitude of the spin motion 
for a single antiferromagnetic excitation exceeds that of 
a ferromagnet by just the appropriate factor to give the 
same order of magnitude for the linewidth for similar 
processes. 

For extended imperfections, such as surface pits, the 
potential strength F(k) may be a very sensitive function 
of kR, where R is the characteristic dimension of the 
imperfection. In the absence of an external field, (III.8) 
remains the correct density of states for the lower 
branch of the spectrum. For the upper branch, specializ­
ing now to the case of a spherical specimen where N=f T, 
the density of states is 

F(27r)-3
Pk^k = -

V (2HeHA) mk28 (cosdk-co^)d(cos6k)dk 

where 
4ir2yh{ (2HeHA+2He

2b2k2) {^Ms/He)[2H2b2k2+ (16wHAMs/3)2}m 

co$24>~[2H2b2k2+ (167rHAMs/3)2/(^Ms/He) (2HeHA+2H2b2k2). 

(HI.9) 

(111.10) 

In order to write the scattering potential in the form 
(IJI . l ) we introduce the antiferromagnetic spin-wave 
creation and annihilation operators for the two branches 
of the spectrum, ak , ak t , ]Sk, and /3kt. These operators 
obey Bose commutation rules and are defined by 

ak=Ukat+VkPiJ; bk= vkoik^+ukpk, (III.11) 

for the two sublattices. The ak$ and b^s are Fourier 
transforms of the <z/s and bi% and the canonical trans­
formation coefficients (in the absence of dipolar fields) 
ujc and Vh are given by 

(111.13) 

where 
S*= S- aMi, 5 / = -S+bj^bj (111.12) 

uk
2=h{l+y{He+HA)/\u{k)\} , 

vk
2=H~l+y(He+HA)/\a>(k)\} , 

where w(k) is given by (11.4) for zero external field. 
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As a typical example of scattering from a point 
imperfection with a wave-vector-independent perturba­
tion, we consider the case of a paramagnetic impurity 
whose g value is different from that of the host spins. 
Then the scattering potential is 

K'=W(gSf-g'S'i'), (111.14) 

where the impurity spin has g V g . Then, for S'=S, and 
using ( I I I . l l ) , (111.12), and (111.13) together with the 
density of states (III.8), we obtain 

T - i = (KSTrWyHeY^g'-gypW2 

X (2Nitf./H,yi*f&2, (111.15) 

where / is the fractional number of imperfections and z 
is the number of nearest neighbors. Notice that the 
result is independent of the anisotropy field as was 
previously indicated. For F ^ I O 6 Oe, M s ^ 5 0 0 Oe, 
# « 1 0 4 Oe, g ' - g ~ l , 2 = 8 , (III.1S) gives a linewidth of 
the order of 10~2 Oe per percent impurity. This result 
( I I I . 15) is essentially the same as for the corresponding 
ferromagnetic scattering. 

Another interesting point imperfection scattering 
mechanism arises from a paramagnetic impurity which 
is coupled to the host spins by a different exchange 
integral / . Such an imperfection is ineffective in scatter­
ing uniform mode spin waves in a ferromagnet because 
an isotropic exchange interaction commutes with the 
total spin S [S 2 = (E*S;)2D of the sample which is a good 
quantum number. The total spin of the sample decreases 
by one unit when a uniform mode magnon is destroyed 
and thus exchange impurities cannot relax the uniform 
mode. This argument is no longer valid for an anti-
ferromagnet because the crystalline field anisotropy does 
not commute with S; thus the anisotropy allows an 
exchange imperfection to relax the uniform mode. For 
such a process the scattering potential may be written 

5c ,=2/2:5(s i-s5)-2/ , i :5(s/-s5) , (in.i6) 

where the sum over d represents a sum over the nearest 
neighbors of S/, the impurity spin. For S'=S, this gives 
a relaxation rate 

T - i = (z*SWA2/TrWyE*){J'- J)2 

X(2NlMs/Hey
2fz^J (111.17) 

where z is the number of nearest neighbor spins for a 
given spin. Notice that the linewidth arising from this 
process vanishes as the anisotropy field tends toward 
zero. For a typical antiferromagnet such as MnF2 , 
where # A ~ 1 0 4 Oe, He** 106 Oe, M s « 5 0 0 Oe, z=S and 
J1— J ^ I O - 1 4 erg, this gives a linewidth of the order of 
10 Oe per percent impurity. 

Sparks, Loudon, and Kittel13 have calculated the line-
width arising from spin-wave scattering via the dipolar 
fields associated with surface pits in ferrimagnetic 
yttrium iron garnet. For a spherical YIG sample, 
assumed completely convered with hemispherical sur­
face pits, their result for the linewidth is AH 

= %M8(R/ro), where R is the mean pit radius and r0 the 
sample radius. For R^lQr4 cm, r 0 ^10~ 2 cm, this gives 
a linewidth of several Oe. For an antiferromagnet, the 
same mechanism may occur with some differences in 
detail. For example, the scattering may mix the two 
spin-wave branches. Also, there is only a transverse 
moment (generated at resonance) to which the dipolar 
fields associated with the pit may couple. This moment7 

is of the order of {HA/H^)II2MS and we might expect this 
to be substituted for Ms in the above expression valid 
for ferromagnets. We shall see that this is indeed true 
for one type of scattering. 

After rather lengthy calculation similar to that of 
Appendix A of reference 13, the two scattering poten­
tials are found to be 

XUi&R)/kRlWak+aJao), (IH.18) 
and 

Wa' = Z&**R*gPM,(uo+v0)/Vl E sin20*(«*+i>jb) 

XUi(kR)/kR~](aoW+a^ao), (IH.19) 

where j\{kR) is a spherical Bessel function. 3Ci' repre­
sents scattering to the lower branch which isotropic in 
the absence of external fields. The potential 3C2' is for 
scattering to the anisotropic spin-wave branch. Using 
the density of states (III.9), the linewidth arising from 
3(Y is given by 

AH= 2TM8 (a/r0) {HJ^TTMS)1^ 

X cos2[ (R/a) (8TrHAMs/H*)2. (111.20) 

Then for R~ 10~3 cm, as in the experiments by Johnson 
and Nethercot14 on MnF2 , r 0 ~ 10~2 cm, and Ms = 600 Oe, 
this gives a linewidth of about 0.1 Oe. This is a rather 
small contribution to the linewidth because the de­
generate modes occur at | k | ~ 105 cm - 1 and are not 
spread over an appreciable region of k space. Then, 
kR^>l and the scattering matrix element is small be­
cause we are in the asymptotic tail of the Bessel func­
tion. I t is important to have degenerate states near 
kRt&l, where the matrix element is maximum. Such 
states usually exist for the anisotropic spin-wave branch. 
Then, using 3C2' with the appropriate density of states, 
(III.8), we find the result 

AH= (irMs/8) (R/r0) {2HA/He)^. (111.21) 

For the above parameters, this contributes several Oe to 
the linewidth. 

We have seen that imperfections in antiferromagnets 
may be about as effective in broadening the AFR as 
they are in ferromagnets. However, for antiferromagnets 
with reasonably large anisotropy fields (i?A^i04—105 

14 F. M. Johnson and A. H, Nethercot, Phys. Rev. 114, 705 
(1959). 
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Oe) as in MnF2 and FeF2, the experimental indica­
tions14-15 are that the line widths are of the order of 
several hundred to several thousand Oe, much greater 
than any of the imperfection widths calculated here. 
Elsewhere,16 it has been shown that various magnon-
phonon processes may be important relaxation mecha­
nisms for such substances where the resonance frequency 
is in the far infrared. However, several antiferromagnets 
have recently been found17,18 (e.g., KMnF3, RbMnF3) 
with sufficiently low anisotropy fields to bring the 
resonance to the microwave region. For these materials, 
the linewidths may be sufficiently small that imperfec­
tions can play a dominant role at low temperatures as 
they do in yttrium iron garnet. 
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APPENDIX 

In this Appendix, we derive the dispersion law (11.11) 
using the microscopic form for the dipole-dipole 
interaction, 

3Ci>=k/32£[(SrS„0 
l,m 

-3(Si-Rlm)(Sm-Rlm)Rlm-*lRlnr*, (Al) 

where Rim is the vector joining the spins at sites I and 
m on a cubic lattice. We split this interaction into three 
parts, 

3Cz>=3Ct+3C*+3Cu, (A2) 

where 3Ct and 3C* are the interactions among the spins 
within a given sublattice and 36 u is the interaction 
between the sublattices. We introduce the creation and 
destruction operators ak

f, ak, bk
f, and bk by (III.12), 

15 R. C. Ohlman and M. Tinkham, Phys. Rev. 123, 425 (1961). 
16 P. Pincus, J. Phys. Radium 23, 536 (1962). 
17 A. J. Heeger, A. M. Portis, D. T. Teaney, and G. Witt, Phys. 

Rev. Letters 7, 307 (1961). 
18 D. T. Teaney, M. J. Freiser, and R. W. H. Stevenson, Phys. 

Rev. Letters 9, 212 (1962). 

and substitute them into (Al) to give 

1 Wk(2akfak+1) 
2 Rt

2 / 

-%(Rr/Ri)2akake
iRfk+c.c, |i?f3, (A3) 

and 

l,k 

- f (akbk+Rr2e-ik'Ri+c.c.)^Rrd, (A4) 

where "ex." denotes complex conjugate, and in (A3) 
the sum over / means summation over all sites on one 
sublattice and in (A4) indicates summation over all 
sites. If we replace the sums over lattice sites by integra­
tions and integrate by parts, we obtain 
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3Cn = 2irgPM. E* ik-kn~2(akbk+ak^) 
+ (Jr/k)*Gj>-f+ (k+/k)Wb^k. 

The complete Hamiltonian including exchange, anisot­
ropy, external field, and dipolar terms may then be 
written as 

3C = Ek{[i4(k)-gi8fl]JktJk+Ci4(k)+^5]flktflk 
+B(k)(akbk+aM)+C(k)akak 

+C^(k)aktA.kt+c(k)iktJkt+c*(k)Jk}-k 
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where 
A (k) = IJSz+gPHA+lTrgpMsk-k+k-2, 

B (k) = 2JSzyk+Trg$Msk-kn-2, 

C(k) = Tg(3Ms(k-/k)2, (A7) 
and 

7k=(l /s )£3«"- a , 

the last sum being over all nearest neighbors to a given 
spin. The Hamiltonian (A6) is then easily diagonalized 
to give the spectrum (11.11). 


